Efficient palette-based decomposition and recoloring of images via RGBXY-space geometry

Jianchao Tan George Mason University
Jose Echevarria Adobe Research
Yotam Gingold George Mason University

This is Jose Echevarria, and l'd like to point out that Jianchao should be the one presenting this work. Unfortunately, he couldn't come because it would have complicated his visa status in the US.

When creating images with digital software, creatives use layers to organize elements according to spatial, semantical or color relationships to name a few.

Such layers can then be used to perform tasks like selective recoloring

Or insert new elements into the scene effortlessly.
However, most of the images shared have been flattened to remove layers and reduce size; or they never had any layer at all (like in the case of photographs). In both cases, all we have are the 3 RGB channels.

Goal

Our approach is to do that based on color and spatial relationships, which often capture semantical structures as well. In particular, we are looking for a compact set of layers with per-pixel weights, according to the primary colors on the image

Those are the colors that abstract the actual ones, while allowing the reconstruction of both the original image, and the new ones resulting from editing any of those layers, with low error.

All this can be divided into two subproblems:

- Palette extraction
- Palette-based layer decomposition

Related Work

- Palette extraction for image editing
- Shapira et al. [2009]
- O'Donovan et al. [2011]
- Lin et al. [2013]
- Gerstner et al. [2013]
- Chang et al. [2015]
- Tan et al. [2016]

image

Related Work

- Order-dependent translucent layers
- Richardt et al. [2014]
- Tan et al. [2015]
- Tan et al. [2016]

Decomposing Images into Layers via RGB-space Geometry [Tan et al. 2016]

Related Work

- Order-independent additive-mixing layers
- Lin et al. [2017]; Zhang et al. [2017], Aksoy et al. [2017].

Unmixing-Based Soft Color Segmentation for Image Manipulation [Aksoy et al. 2017]

Other works decompose the image into a set of order-independent additive mixing layers. The most recent of these, Aksoy et al. 2017, but has layers which consist of color distributions, not single palette colors.

Related Work

- Physically-based layers
- Abed et al. [2014]; Tan et al. [2015]; Aharoni-Mack et al. [2017]; Tan et al. [2018].

Pigmento: Pigment-Based Image Analysis and Editing [Tan et al. 2018]

Our approach

- Geometry-based convex palettes
- Simpler
- More general

- Additive-mixing layers
- Single colors
- More general

Palette extraction

after we automatically extract the palette, we use the palette to help decompose image into additive mixing layers.

Convex hulls in RGB

- Image colors show a convex structure in RGB [Tan et al. 2016]

The original convex hull can be simplified to any complexity level, convex palette structure in any simplified level will always keep colors points inside.

Palette Size

- The convex hull can be simplified to any complexity level.

The original convex hull can be simplified to any complexity level, convex palette structure in any simplified level will always keep colors points inside.

Palette Size

- The convex hull can be simplified to any complexity level.

The original convex hull can be simplified to any complexity level, convex palette structure in any simplified level will always keep colors points inside.

Palette Size

- The convex hull can be simplified to any complexity level.

The original convex hull can be simplified to any complexity level, convex palette structure in any simplified level will always keep colors points inside.

Palette Size

- The convex hull can be simplified to any complexity level.

The original convex hull can be simplified to any complexity level, convex palette structure in any simplified level will always keep colors points inside.

Palette Size

- The convex hull can be simplified to any complexity level.

The original convex hull can be simplified to any complexity level, convex palette structure in any simplified level will always keep colors points inside.

Palette Size

- The convex hull can be simplified to any complexity level.

In Tan et al 2016, users manually choose the palette size. Ideally, the best palette is the smallest one that still encloses all the image colors.
We modify this to automatically choose the palette size based on tolerable reconstruction error. We use the total distance between the hull and points outside as the metric to stop simplification. Such distance in RGB space is also just the image color reconstruction errors. For this example, 4 vertices will leave a large portion of points (blue points) outside the hull.

Our automatic termination finds a tradeoff between abstraction and reconstruction error.

Image Decomposition

after we automatically extract the palette, we use the palette to help decompose image into additive mixing layers.

Extracting mixing weights

palette

RGB-space

Optimization

- Slow for high resolutions
- Many parameters to tune
- Per-image parameters

Extracting mixing weights

palette

RGB-space

Optimization

Extracting mixing weights

palette

RGB-space

Optimization
Generalized Barycentric Coordinates

- Fast
- No parameters to tune
- Does not guarantee
spatial smoothness

Extracting mixing weights

palette

RGB-space

Optimization
Generailized Barycentric
Coordinates

Extracting mixing weights

palette

RGB-space

Optimization
Generalized Barycentric Coordinates

For this image, we can visualize its pixel colors in a 3D color-space via their R,G,B attributes.

Pixels also have an x, y attribute it was not considered before

We can combine these attributes together to get a 5D point for each pixel. It's hard to visualize. But geometric operations like the convex hull are still well defined.

Conveniently, the RGBXY convex hull vertices, when projected back into RGB, lie inside the RGB convex hull.
This leads us to our approach.

Two-level decomposition

image

RGB palette mixing weights \mathbf{W}

Two-level decomposition

Two-level decomposition

We first use delaunay tessellation to generate a set of simplices in RGBXY space.
Let's consider one simplex in RGBXY space, here, 6 RGBXY vertices of one simplex is projected to RGB for visualization.

And these small dots are RGBXY points that are covered by this simplex.

Delaunay Tessellation in RGBXY space

The barycentric coordinates of these inside RGBXY points in terms of this simplex is directly the mixing weights we want.

Two-level decomposition

image

And these small dots are subset of RGB colors that are covered by this simplex.

Tessellation in RGB space

The barycentric coordinates of these inside RGB points in terms of this simplex is directly the mixing weights we want.

As seen in the image, when these RGB points are the projected vertices from the RGBXY convex hull, we can see how we achieved a RGB parameterization of each pixel of the image, aware of the spatial relationships.

Two-level decomposition

Two-level decomposition

image

Tessellation in RGB space

When decompose an RGB-space palette into simplices, the Delaunay tessellation creates simplices with favors short edges

<click>

 palette color would turn grey pixels "colorful"
<click>
Instead, we explicitly add an edge along the "line of greys" between the darkest and lightest colors in the palette by performing a simple star tessellation.

recoloring results comparison between two different tessellations of RGB space.
 both examples' gray colors regions are also recolored, which does not meet user's expectation.
Our star triangulation will preserve these gray colors regions, if they are not necessarily to be changed.

Two-level decomposition

image

Updating $W_{\text {RGB }}$ is independent of image size.
Other methods need to re-compute everything from scratch.

Performance

Running time comparison between four additive mixing image decomposition algorithms.
Our algorithm's performance is orders of magnitude faster and scales extremely well with image size.
We evaluated our RGBXY algorithm on 170 images up to 12 megapixels.
They took a few minutes to compute from scratch, including palette selection.
ayer updating with an updated palette is nearly instantaneous (a few to tens of milliseconds).
We also tested an additional six 100 megapixel images (not shown; average running time 12.6 minutes)

Python Implementation

The python implementation of our core algorithm only has 48 lines of code, which is easy to understand and convenient to use.

Comparisons

We also compared our layers with Aksoy et al. 2017, which is state of art in additive mixing layers extraction.
In first example, the yellow face and blue beard appear together in one layer. And in second example, one part of purple haze is combined with face together. Their colorful layers will make it not easy to edit the image.

Recoloring comparison with three previous methods

Demo
 Javascript + Python with PyOpenCL

Layer creation from scratch

Our palette and layer editing GUI can let user start from a blank or dummy palette. The user can change palette colors or add new palette colors. After some rounds of edits, the palette and layers quality are quickly in good shape and can reconstruct image with very small error. The layer editing is real time.

Layer creation from an automatic palette

Interactive decomposition gives more control to the users

Conclusion

- An extremely efficient approach to layer decomposition via RGBXY geometry

Conclusion

- Our two-level decomposition supports real-time decomposition when palette editing.

Palette updates Fixed
 $\mathrm{W}=\mathrm{W}_{\mathrm{RGB}}{ }^{*} \mathbf{W}_{\mathrm{RGBXY}}$

Conclusion

- It's important to capture the "line of greys".

Limitations

- In isolated cases, the 5D convex hull takes somewhat longer than usual to compute.

>200s cases:			
from left to right: image size(MP), palette size			
[6.78	9.	3611.	315.557657]
7.68	7.	3089.	256.348872]
9.1	6.	2822.	414.002905]
9.1649	8.	3308.	239.159933]
9.216	7.	3626.	254.504188]
9.6292	8.	4199.	232.211461]
[10.56	7.	3374.	228.450447]
[10.664	6.	3041.	223.498411]
[10.668	6.	2788.	203.945095]
[11.76	8.	2734.	228.173037]
[12.	9.	4148.	301.418308]
Palette sizes:			

Limitations

- Our star tessellation assumes that palette colors are vertices of a convex polyhedron.
- For palette colors in the interior, must use inferior Delaunay tessellation.

[^0]
Future Work

- More speed via super-pixels or parallel convex hull algorithms.

Future Work

- Robustness via approximate convex hull algorithms.

Future Work

- Robustness via approximate convex hull algorithms

Future Work

- Robustness via approximate convex hull algorithms.

Thank You!

- Contact Information:
- Jianchao Tan: jtan8@gmu.edu
- Jose Echevarria: echevarr@adobe.com
- Yotam Gingold: ygingold@gmu.edu
- Project Website (GUI, code, data): https://cragl.cs.gmu.edu/fastlayers)
- Artists: Adelle Chudleigh; Dani Jones; Karl Northfell; Michelle Lee; Adam Saltsman; Yotam Gingold; DeviantArt user Sylar113; Fabio Bozzone; Piper Thibodeau; Spencer Nugent; George Dolgikh; DeviantArt user Ranivius.
- Sponsors:
- NSF, Adobe, Google

Extra slides

Possible questions

- Star triangulation starting from black palette color, what if no black color in extracted palette?
- Does your method require palette to cover all pixel colors when editing palette in GUI? What if I want some palette colors that is inside color point cloud?
- In your performance figure, there are one or two cases that are slower than many others. Can you describe the worst case performance of your method?
- Do you have failure case?
- How do you measure the quality of your layer results and your interactive editing GUI?

1. We use palette color that is closest to black color to be star point. Our extracted geometric convex palette usually contain one palette color that is close to black color for most images.

 white edge

 s not that good. But this is not very often. We only find 3 cases from170 tested images. And this case may be improved by using an approximate convex hull method in the future.

 quality easily.

 into current GUI in the future. We have a survey to some novice or expert image editing persons. They think our GUI is useful in image editing tasks. And they hope to see recoloring GUI and layer editing GUI merge together.

[^0]: then ans one could fall back on a Delaunay tessellation, which may not create an edge along the line of grays. \#\#\#\#
 The line of grays could be maintained with a constrained tetrahedralization algorithm, though these are complex and may add new, undesired vertices [Yang et al. 2005].

